ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Codey Olson, Jesse Snow, Meng-Jen (Vince) Wang, Glenn Sjoden, Edward Cazalas
Nuclear Technology | Volume 209 | Number 9 | September 2023 | Pages 1241-1251
Research Article | doi.org/10.1080/00295450.2023.2203291
Articles are hosted by Taylor and Francis Online.
Here we perform the matching of neutron counts in two detector gasses through capture reactions and radiation transport–optimized moderating materials. One of our detectors uses helium-3 (3He) gas and has been widely used as a neutron detection material in proportional detector tube designs. This study examines boron trifluoride (BF3) as a potential gas for neutron detection in place of 3He based on a previously studied “spectrally matched” design derived from deterministic adjoint analyses that closely mimic the spectral response of 3He. The integrated spectral response of each tube, i.e., the count rate, is calculated and measured at various distances from an isotropic neutron source where similar “total sources” are achieved in either detection system. Our results show the integrated spectral response of a dual BF3 tube detector was within 10% of a single 3He tube when exposed to a similar source. GEANT4 Monte Carlo simulations were used to calculate the total source for each detector and showed count rates within 5% of those produced by MCNP, providing a strong confidence in its behavior in the thermal energy regime. We provide results in this study to partially validate the replacement based on the spectrally matched design, which will lead to further validation through the utilization of multiple neutron spectra via simulated and experimental studies.