ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Fatih Ekinci, Erkan Bostanci, Mehmet Serdar Güzel, Özlem Dagli
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1229-1239
Research Article | doi.org/10.1080/00295450.2023.2188144
Articles are hosted by Taylor and Francis Online.
Biomaterials are indispensable elements for improving human health and quality of life. Applications of biomaterials include the use of phantoms as tissue replacement in diagnostics (biosensors), medical supplies (blood bags and surgical instruments), therapeutic treatments (medical implants and devices), regenerative medicine (tissue engineered skin and cartilage), and radiation dosimetric studies. Since polymers are organic, they offer a much more versatile usage area than metals and ceramic biomaterials, particularly in soft tissue substitutes. The wide physical, mechanical, and chemical properties provided by polymers have encouraged extensive research, development, and application of polymeric biomaterials. Their usage as a soft tissue phantom is at the forefront of these applications.
In this study, the ionization, recoils, phonon release, collision events, and lateral straggle properties of polymeric biomaterials [e.g., polymethylmetacrylate (PMMA), polystyrene, polyethylene, polypropylene, and polyvinylchloride] closest to soft tissue are investigated in carbon therapy application. The Brag peak location achieved for PMMA is quite close to that of soft tissue, within 4.8%, average recoils within 0.5%, and collision event parameter within 0.6%, however, lateral scattering is comparatively larger by roughly 6.8%, according to TRIM-based Monte Carlo simulation results. Thus, when carbon ion is taken into account, the current findings show that PMMA is one of the possible polymeric biomaterials to simulate soft tissue in terms of radiation interaction properties.