ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Shigeki Shiba, Daiki Iwahashi, Tsuyoshi Okawa
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1154-1163
Research Article | doi.org/10.1080/00295450.2023.2191588
Articles are hosted by Taylor and Francis Online.
From the viewpoint of criticality management in the fuel debris retrieval operation at the Fukushima Daiichi Nuclear Power Station, it is important in criticality safety analyses to consider the behavior of fuel debris particles as they fall into the water, given that the neutron moderation condition of the fuel debris can dramatically change. In this study, we evaluated a reactivity insertion while fuel debris particles dropped into the water. Specifically, we considered the effects of the fuel debris particle-size distribution in either an erroneous operation or a postulated accident in the fuel debris retrieval operation. Three types of fuel debris particle-size distribution were assumed: monodisperse, uniform, and Rosin-Rammler. The behaviors of the fuel debris particles during sedimentation were evaluated using the coupled Distinct Element Method–Moving Particle Simulation (DEM-MPS) code. The multiplication factors corresponding to the behaviors of the falling fuel debris were calculated by a continuous-energy Monte Carlo code MVP3.0 with JENDL-4.0. Consequently, the multiplication factors changed with the particle motions during the sedimentation, and the trends of the multiplication factors differed between the particle-size distributions. Especially, the 2-cm monodisperse particle-size distribution showed the highest multiplication factor during sedimentation, the trend of which differed from the others in the fuel debris particles dispersing and piled-up phases in the water.