ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Shigeki Shiba, Daiki Iwahashi, Tsuyoshi Okawa
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1154-1163
Research Article | doi.org/10.1080/00295450.2023.2191588
Articles are hosted by Taylor and Francis Online.
From the viewpoint of criticality management in the fuel debris retrieval operation at the Fukushima Daiichi Nuclear Power Station, it is important in criticality safety analyses to consider the behavior of fuel debris particles as they fall into the water, given that the neutron moderation condition of the fuel debris can dramatically change. In this study, we evaluated a reactivity insertion while fuel debris particles dropped into the water. Specifically, we considered the effects of the fuel debris particle-size distribution in either an erroneous operation or a postulated accident in the fuel debris retrieval operation. Three types of fuel debris particle-size distribution were assumed: monodisperse, uniform, and Rosin-Rammler. The behaviors of the fuel debris particles during sedimentation were evaluated using the coupled Distinct Element Method–Moving Particle Simulation (DEM-MPS) code. The multiplication factors corresponding to the behaviors of the falling fuel debris were calculated by a continuous-energy Monte Carlo code MVP3.0 with JENDL-4.0. Consequently, the multiplication factors changed with the particle motions during the sedimentation, and the trends of the multiplication factors differed between the particle-size distributions. Especially, the 2-cm monodisperse particle-size distribution showed the highest multiplication factor during sedimentation, the trend of which differed from the others in the fuel debris particles dispersing and piled-up phases in the water.