ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Shaoxuan Wang, Zhixian Lin, Ming Sun, Yuantao Yao, Jie Wu, Daochuan Ge
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1129-1144
Research Article | doi.org/10.1080/00295450.2023.2195357
Articles are hosted by Taylor and Francis Online.
In complex nuclear energy redundancy systems, there are many failure events that do not follow specific time distribution. For these atypical time-distribution events, traditional dynamic fault tree (DFT) methods cannot be applied directly, which has posed great challenges to reliability modeling and evaluating. In this contribution, we summarize atypical time-distribution events in nuclear energy redundancy systems and propose new modeling and evaluating methods based on DFT. To demonstrate the reasonability of the proposed methods, two case studies about make-up water pumps and emergency diesel generators are analyzed in comparison with traditional DFT. The results indicate that the proposed methods can effectively model and analyze the reliability of redundant systems with atypical time-distribution events. The proposed methods can provide useful information for optimization design of nuclear energy redundancy systems and has potential to improve the economy of nuclear power plants by relaxing overestimated unreliability.