ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
Shaoxuan Wang, Zhixian Lin, Ming Sun, Yuantao Yao, Jie Wu, Daochuan Ge
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1129-1144
Research Article | doi.org/10.1080/00295450.2023.2195357
Articles are hosted by Taylor and Francis Online.
In complex nuclear energy redundancy systems, there are many failure events that do not follow specific time distribution. For these atypical time-distribution events, traditional dynamic fault tree (DFT) methods cannot be applied directly, which has posed great challenges to reliability modeling and evaluating. In this contribution, we summarize atypical time-distribution events in nuclear energy redundancy systems and propose new modeling and evaluating methods based on DFT. To demonstrate the reasonability of the proposed methods, two case studies about make-up water pumps and emergency diesel generators are analyzed in comparison with traditional DFT. The results indicate that the proposed methods can effectively model and analyze the reliability of redundant systems with atypical time-distribution events. The proposed methods can provide useful information for optimization design of nuclear energy redundancy systems and has potential to improve the economy of nuclear power plants by relaxing overestimated unreliability.