ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Milos I. Atz, Massimiliano Fratoni
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1109-1128
Research Article | doi.org/10.1080/00295450.2023.2189430
Articles are hosted by Taylor and Francis Online.
Decay heat is an important constraint for repository size and design because it can drive processes that affect performance and compromise critical materials. This paper investigates how compliance with repository thermal limits is affected by three decay heat management strategies: waste package loading, waste package spacing, and surface storage time. In particular, this paper focuses on how repository area, a result of package spacing, is impacted by waste loading and surface storage time. A two-part analytical heat transfer model is presented and executed iteratively to determine the minimum allowable repository area. The analysis considers three generic close-contact repository designs along with the wastes generated from the 40 fuel cycle analysis examples used to generate metric data for the Fuel Cycle Evaluation and Screening study.
Detailed results are presented for two fuel cycles: the once-through use of low-enriched uranium fuel in light water reactors and the continuous recycling of U and Pu in sodium fast reactors. Two limits for surface storage time are identified: the time required for disposal to be possible at all and the time at which further surface storage time yields no gains. The impact of waste loading is also diminished with increasing surface storage time. In general, the generic salt repository is most flexible to accept high-heat-generating wastes with less surface storage time than other repository environments. Limited-recycle fuel cycles are shown to pose a disposal challenge because of elevated, sustained decay heat generation in the waste.