ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Milos I. Atz, Massimiliano Fratoni
Nuclear Technology | Volume 209 | Number 8 | August 2023 | Pages 1109-1128
Research Article | doi.org/10.1080/00295450.2023.2189430
Articles are hosted by Taylor and Francis Online.
Decay heat is an important constraint for repository size and design because it can drive processes that affect performance and compromise critical materials. This paper investigates how compliance with repository thermal limits is affected by three decay heat management strategies: waste package loading, waste package spacing, and surface storage time. In particular, this paper focuses on how repository area, a result of package spacing, is impacted by waste loading and surface storage time. A two-part analytical heat transfer model is presented and executed iteratively to determine the minimum allowable repository area. The analysis considers three generic close-contact repository designs along with the wastes generated from the 40 fuel cycle analysis examples used to generate metric data for the Fuel Cycle Evaluation and Screening study.
Detailed results are presented for two fuel cycles: the once-through use of low-enriched uranium fuel in light water reactors and the continuous recycling of U and Pu in sodium fast reactors. Two limits for surface storage time are identified: the time required for disposal to be possible at all and the time at which further surface storage time yields no gains. The impact of waste loading is also diminished with increasing surface storage time. In general, the generic salt repository is most flexible to accept high-heat-generating wastes with less surface storage time than other repository environments. Limited-recycle fuel cycles are shown to pose a disposal challenge because of elevated, sustained decay heat generation in the waste.