ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Xiang Meng, Zhongwei Yuan, Taihong Yan, Weifang Zheng
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1101-1107
Technical Paper | doi.org/10.1080/00295450.2023.2169041
Articles are hosted by Taylor and Francis Online.
The traditional evaporation process has obvious disadvantages when treating uranyl nitrate with a uranium concentration less than 10 g/L, such as more ancillary equipment, high energy consumption, and high cost. By contrast, nanofiltration equipment has low integration, and multivalent cations can be rejected effectively by nanofiltration membranes. In this work, a spiral-wound DK1812 nanofiltration membrane with an area of 0.325 m2 was used to treat a uranium nitrate solution with a uranium concentration of 10 g/L. The uranium concentration in the permeate is 16.91 mg/L, which means that the uranium rejection rate is 99.83% and the permeate flux of the solution is 71.1 L/(m2·h) under the conditions of a feed temperature of 30°C, a tangential velocity of 30 cm/s, and a transmembrane pressure of 1.5 MPa.