ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Keeping up with Kewaunee
In October 2012, Dominion Energy announced it was closing the Kewaunee nuclear power plant, a two-loop 574-MWe pressurized water reactor located about 27 miles southeast of Green Bay, Wis., on the western shore of Lake Michigan. At the time, Dominion said the plant was running well, but that low wholesale electricity prices in the region made it uneconomical to continue operation of the single-unit merchant power plant.
A. John Arul, Parthkumar Rajendrabhai Patel, Darpan Krishnakumar Shukla
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 1024-1039
Technical Paper | doi.org/10.1080/00295450.2023.2175584
Articles are hosted by Taylor and Francis Online.
Passive safety systems help to improve overall plant safety, reliability, and resilience. However, the real gain in the use of passive systems depends on the robustness of the design utilizing the passive process and the role of active elements, if any. In this paper, we propose a fan-controlled sodium-to-air heat exchanger (AHX) system design for a failsafe and passive decay heat removal (DHR) function in a pool-type sodium-cooled fast reactor. The proposed system uses a fan to control air flow and minimize heat loss during normal operation, and when the fan trips due to loss of power or a trip signal, DHR gets enabled in a failsafe mode. The system is analyzed with the help of a simplified one-dimensional model as well as with detailed computational fluid dynamics software. It is found from analysis that it is possible to control and maintain the air flow to about 4% to 5% of full flow, as in the case of conventional dampers, to minimize heat loss during normal reactor operation. The reliability of the proposed system is also analyzed and shows that the fan-controlled AHX-based decay heat removal system (DHRS) has a much better reliability compared to the conventional passive DHRS with active damper-dependent operation.