ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Yong Xu, Yunze Cai, Lin Song
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 929-962
Critical Review | doi.org/10.1080/00295450.2023.2169042
Articles are hosted by Taylor and Francis Online.
The condition assessment of equipment in nuclear power plants (NPPs) could provide essential information for operation and maintenance decisions, which would have a significant impact on improving the safety and economy of NPPs. To date, substantial work has been conducted on the condition assessment based on machine learning for NPP equipment. To provide a comprehensive overview for researchers interested in developing machine learning methods for NPP equipment condition assessment, this critical review presents a detailed literature survey on state-of-the-art research and identifies challenges for future study. Valuable information is presented, including major failure modes, data sources, maintenance strategies, and the relationship between equipment lifetime, assessment technology, and maintenance strategy. Following the typical lifetime of NPP equipment for condition assessment, current works in this domain are categorized into anomaly detection, remaining useful life prediction, and fault detection and diagnosis. The techniques and methodologies adopted in the literature are summarized from each aspect. In particular, the in-depth NPP equipment condition assessment survey based on deep learning methods is presented. In addition, we elaborate on current issues, challenges, and future research directions for the condition assessment of equipment in NPPs. These directions we believe will pave the way for equipment condition assessment.