ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Yong Xu, Yunze Cai, Lin Song
Nuclear Technology | Volume 209 | Number 7 | July 2023 | Pages 929-962
Critical Review | doi.org/10.1080/00295450.2023.2169042
Articles are hosted by Taylor and Francis Online.
The condition assessment of equipment in nuclear power plants (NPPs) could provide essential information for operation and maintenance decisions, which would have a significant impact on improving the safety and economy of NPPs. To date, substantial work has been conducted on the condition assessment based on machine learning for NPP equipment. To provide a comprehensive overview for researchers interested in developing machine learning methods for NPP equipment condition assessment, this critical review presents a detailed literature survey on state-of-the-art research and identifies challenges for future study. Valuable information is presented, including major failure modes, data sources, maintenance strategies, and the relationship between equipment lifetime, assessment technology, and maintenance strategy. Following the typical lifetime of NPP equipment for condition assessment, current works in this domain are categorized into anomaly detection, remaining useful life prediction, and fault detection and diagnosis. The techniques and methodologies adopted in the literature are summarized from each aspect. In particular, the in-depth NPP equipment condition assessment survey based on deep learning methods is presented. In addition, we elaborate on current issues, challenges, and future research directions for the condition assessment of equipment in NPPs. These directions we believe will pave the way for equipment condition assessment.