ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Idaho’s IWTU surpasses tank waste treatment goal
As of last week, crews with Department of Energy cleanup contractor Idaho Environmental Coalition (IEC) processed more than 142,000 gallons of radioactive sodium-bearing tank waste at Idaho’s Integrated Waste Treatment Unit (IWTU) this year.
Takuya Yamashita, Takeshi Honda, Masato Mizokami, Kenichiro Nozaki, Hiroyuki Suzuki, Marco Pellegrini, Takeshi Sakai, Ikken Sato, Shinya Mizokami
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 902-927
Technical Paper | doi.org/10.1080/00295450.2022.2157663
Articles are hosted by Taylor and Francis Online.
The estimation and understanding of the state of fuel debris and fission products inside the plant is an essential step in the decommissioning of the Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station (1F). However, the direct observation of the plant interior, which is under a high radiation environment, is difficult and limited. Therefore, in order to understand the plant interior conditions, a comprehensive analysis and evaluation are necessary, based on various measurement data from the plant, analysis of plant data during the accident progression phase, and information obtained from computer simulations for this phase. These evaluations can be used to estimate the conditions of the interior of the reactor pressure vessel (RPV) and the primary containment vessel (PCV). Herein, 1F Unit 3 is addressed as the subject to produce an estimated diagram of the fuel debris distribution from data obtained about the RPV and PCV based on the comprehensive evaluation of various measurement data and information obtained from the accident progression analysis, which were released to the public in November 2022.