ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Deniz Canbula, Bora Canbula
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 895-901
Technical Paper | doi.org/10.1080/00295450.2022.2163802
Articles are hosted by Taylor and Francis Online.
Some isotopes such as 123I and 124I are useful in medical science, and thus, the production of these isotopes has great importance. Iodine-123 is the gamma-emitting radioisotope of radioiodine, and 124I is the long-lived positron-emitting radioisotope of radioiodine, and they have applications in diagnosis via both Single Photon Emission Computed Tomography (SPECT)/Positron Emission Tomography (PET) and radiotherapy. Therefore, many theoretical and experimental studies are performed for these isotopes. In this study, the cross sections of the 123Te(p,n), 124Te(p,n), and 124Te(p,2n) reactions up to 31 MeV, where 123I and 124I can be produced, are calculated by importing the Collective Semi-Classical Fermi Gas Model (CSCFGM) to the Talys 1.96 computer code. The predictions are compared with the default theoretical calculations of Talys 1.96 and existing experimental data taken from the EXFOR library. The results are in good agreement with the experimental data, and therefore, CSCFGM looks to be a useful tool for predicting the production reactions of some therapeutic isotopes.