ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2023 ANS Winter Conference and Expo
November 12–15, 2023
Washington, D.C.|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
October 2023
Nuclear Technology
Fusion Science and Technology
Latest News
National Museum of Nuclear Science and History explores “atomic” culture
For many of us, the toys of our childhood leave indelible marks on our consciousness, affecting our long-term perceptions and attitudes about certain things. Hot Wheels may inspire a lifelong fascination with fast, flashy automobiles, while Barbies might shape ideas about beauty and self-image. For the generation who grew up during the Atomic Age—the post–World War II era from roughly the mid-1940s to the early 1960s—the toys, games, and entertainment of their childhoods might have included things like atomic pistols, atomic trains, rings with tiny amounts of radioactive elements, and comic books, puzzles, and music about nuclear weapons.
Bhavani Sasank Nagothi, John Arnason, Kathleen Dunn
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 887-894
Technical Paper | doi.org/10.1080/00295450.2022.2161266
Articles are hosted by Taylor and Francis Online.
Corrosion products in pressurized water reactors are challenging to study in situ, yet understanding their properties is key to improving reactor performance and radiation reduction. In this study, a hydrothermal synthesis technique was used to produce nickel ferrite (NiFe2O4) particles from goethite (α-FeOOH) and nickel nitrate hexahydrate [Ni(NO3)2 6H2O] in the presence of sodium hydroxide (NaOH). X-ray diffraction was used for phase identification, with scanning electron microscopy used for particle shape and size analysis. By varying the [Ni]:[Fe] ratio of the precursors and synthesis temperature between 100°C to 250°C, a phase diagram was developed to determine the stability field in both composition and temperature for obtaining a single-phase, nonstoichiometric nickel ferrite product. The compositional boundaries of the single-phase region of the diagram are a function of temperature, consistent with the increased solubility and reaction rates at temperatures above 125°C. The single-phase nickel ferrite encompasses [Ni]:[Fe] ratios in a very narrow range at 150°C, only 0.35 to 0.375, but widens as a function of temperature and reaches its greatest breadth at 250°C. At this temperature, a single-phase product is obtained for a range of starting compositions from 0.30 to 0.425. Outside of this window, additional nanoparticles are obtained whose identity and composition vary with both temperature and starting mixture. On the lower nickel content side of the single-phase region, the mixture contains either unreacted goethite (for temperatures below 200°C) or hematite (α-Fe2O3) at 200°C or higher. On the Ni-rich side of the single-phase region, theophrastite [β-Ni (OH)2] was obtained along with the nickel ferrite, at all temperatures studied. The single-phase window was widest at 250°C, resulting in nickel ferrites with a Ni mole fraction between 0.23 and 0.31.