ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Bhavani Sasank Nagothi, John Arnason, Kathleen Dunn
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 887-894
Technical Paper | doi.org/10.1080/00295450.2022.2161266
Articles are hosted by Taylor and Francis Online.
Corrosion products in pressurized water reactors are challenging to study in situ, yet understanding their properties is key to improving reactor performance and radiation reduction. In this study, a hydrothermal synthesis technique was used to produce nickel ferrite (NiFe2O4) particles from goethite (α-FeOOH) and nickel nitrate hexahydrate [Ni(NO3)2 6H2O] in the presence of sodium hydroxide (NaOH). X-ray diffraction was used for phase identification, with scanning electron microscopy used for particle shape and size analysis. By varying the [Ni]:[Fe] ratio of the precursors and synthesis temperature between 100°C to 250°C, a phase diagram was developed to determine the stability field in both composition and temperature for obtaining a single-phase, nonstoichiometric nickel ferrite product. The compositional boundaries of the single-phase region of the diagram are a function of temperature, consistent with the increased solubility and reaction rates at temperatures above 125°C. The single-phase nickel ferrite encompasses [Ni]:[Fe] ratios in a very narrow range at 150°C, only 0.35 to 0.375, but widens as a function of temperature and reaches its greatest breadth at 250°C. At this temperature, a single-phase product is obtained for a range of starting compositions from 0.30 to 0.425. Outside of this window, additional nanoparticles are obtained whose identity and composition vary with both temperature and starting mixture. On the lower nickel content side of the single-phase region, the mixture contains either unreacted goethite (for temperatures below 200°C) or hematite (α-Fe2O3) at 200°C or higher. On the Ni-rich side of the single-phase region, theophrastite [β-Ni (OH)2] was obtained along with the nickel ferrite, at all temperatures studied. The single-phase window was widest at 250°C, resulting in nickel ferrites with a Ni mole fraction between 0.23 and 0.31.