ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Abdelfatah Abdelmaksoud, Hesham Elbakhshawangy, Mohamed Abdelaziz
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 857-871
Technical Paper | doi.org/10.1080/00295450.2022.2158667
Articles are hosted by Taylor and Francis Online.
In the present work, a numerical study of inward and outward buckling of two successive fuel plates of a typical material testing reactor is investigated using computational fluid dynamics code. Fuel plate buckling results in partial blockage of the hot channel. Both buckling toward the inside and outside are considered. Simulations are conducted for different blockage levels of the nominal flow area, i.e., 0%, 20%, 40%, 50%, 60%, and 70% for inward buckling. Blockage levels of 0%, 20%, 40%, 50%, 60%, 70%, 80%, and 90% are considered for outward buckling. The impact of the flow field redistribution in four successive channels on the cooling capacity of each channel is investigated. The obtained results show that for an inward buckling ratio greater than 50%, critical phenomena will occur that could affect the clad integrity. Moreover, for inward buckling of 70%, the maximum clad temperature in the blocked channel reaches the value associated with the onset of nucleate boiling at the operating pressure. On the other hand, for outward buckling of 90%, critical phenomena that could affect the clad integrity will occur.