ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Philip H. Sewell, Robert B. Hayes
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 835-856
Technical Paper | doi.org/10.1080/00295450.2022.2157662
Articles are hosted by Taylor and Francis Online.
To develop the criticality safety basis for any system, process, or package, the worst-case configuration of materials resulting in the maximum system reactivity must be determined. It is commonly accepted that in terms of the maximum system reactivity, at the lower enrichments used in current commercial practice (i.e., 5 wt% 235U), a heterogeneous configuration is bounding of a homogeneous mixture of fissile and moderating materials. However, a common assumption made is that with increasing enrichment, a homogeneous system can be bounding. With increased industry interest in utilizing higher enrichments for commercial applications with low-enriched uranium (LEU+) (≤10 wt% 235U), and high assay low-enriched uranium (HALEU) (≤20 wt% 235U) materials, it has become increasingly important to verify any assumptions and to have a better understanding of the expected system behavior at these higher enrichments.
The SCALE code system was used to assess the effects of heterogeneity on system reactivity with varying enrichments and system configurations for a UO2 and water system, typical of a transportation package criticality analysis. The purpose of this assessment was to provide insight on the effect of material heterogeneity on system reactivity with increasing enrichment. The results of this study confirm that for systems with a higher hydrogen-to–fissile material (H/X) ratio, the homogeneous mixture of material may be bounding for HALEU materials. However, for systems with a lower hydrogen-to–fissile material ratio (H/X ≤ 200), a heterogeneous configuration of contents is expected to be bounding for most LEU materials. Overall, for any LEU system, including HALEU material, heterogeneous reactivity effects should always be considered.