ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Philip H. Sewell, Robert B. Hayes
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 835-856
Technical Paper | doi.org/10.1080/00295450.2022.2157662
Articles are hosted by Taylor and Francis Online.
To develop the criticality safety basis for any system, process, or package, the worst-case configuration of materials resulting in the maximum system reactivity must be determined. It is commonly accepted that in terms of the maximum system reactivity, at the lower enrichments used in current commercial practice (i.e., 5 wt% 235U), a heterogeneous configuration is bounding of a homogeneous mixture of fissile and moderating materials. However, a common assumption made is that with increasing enrichment, a homogeneous system can be bounding. With increased industry interest in utilizing higher enrichments for commercial applications with low-enriched uranium (LEU+) (≤10 wt% 235U), and high assay low-enriched uranium (HALEU) (≤20 wt% 235U) materials, it has become increasingly important to verify any assumptions and to have a better understanding of the expected system behavior at these higher enrichments.
The SCALE code system was used to assess the effects of heterogeneity on system reactivity with varying enrichments and system configurations for a UO2 and water system, typical of a transportation package criticality analysis. The purpose of this assessment was to provide insight on the effect of material heterogeneity on system reactivity with increasing enrichment. The results of this study confirm that for systems with a higher hydrogen-to–fissile material (H/X) ratio, the homogeneous mixture of material may be bounding for HALEU materials. However, for systems with a lower hydrogen-to–fissile material ratio (H/X ≤ 200), a heterogeneous configuration of contents is expected to be bounding for most LEU materials. Overall, for any LEU system, including HALEU material, heterogeneous reactivity effects should always be considered.