ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Lucas Wodrich, Alvin J. H. Lee, Tomasz Kozlowski, Caleb S. Brooks
Nuclear Technology | Volume 209 | Number 6 | June 2023 | Pages 809-834
Technical Paper | doi.org/10.1080/00295450.2022.2161276
Articles are hosted by Taylor and Francis Online.
Microreactors present an opportunity to revolutionize the role of nuclear energy via the development of these technologies in a diverse and distributed energy network for a clean energy future. Because of the limited output of these novel systems, the deployment of microreactors should be focused on high-value applications in order to realize their full potential. This involves understanding the microreactor performance and how it interacts with the preexisting infrastructure. In this work, an energy-diverse embedded grid is modeled using OpenModelica in order to study the impact of microreactor integration under several distinct deployment approaches. The University of Illinois at Urbana-Champaign (UIUC) is used as a prototypic market due to its well-characterized energy ecosystem with available extensive real-time and historical data. The UIUC model recreates the existing chilled-water, steam, and electricity infrastructure, including wind, solar, and cogeneration sources. The infrastructure model simulates the interplay between the three utilities and how different microreactor integration approaches would impact UIUC’s embedded grid. From this study, the deployment of a single microreactor under electric load-conditioning, steam production retrofit, or a hybrid of both is found to be the most appropriate in consideration of their unique advantages toward cost savings and grid resilience. Meanwhile, if grid resiliency is not a main objective, the greatest emissions reduction and cost-savings benefits can be obtained by operating the reactor in a base-loading configuration. This study employed historically low coal and gas prices and provided a conservatively low estimate for the benefits from a microreactor. Given the price volatility of fossil fuels, the benefits of the microreactor are expected to be greater than this estimate. Finally, the modular nature of the modeling framework allows for an extension of the analysis to other similar embedded grids.