ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2023 ANS Winter Conference and Expo
November 12–15, 2023
Washington, D.C.|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
October 2023
Nuclear Technology
Fusion Science and Technology
Latest News
National Museum of Nuclear Science and History explores “atomic” culture
For many of us, the toys of our childhood leave indelible marks on our consciousness, affecting our long-term perceptions and attitudes about certain things. Hot Wheels may inspire a lifelong fascination with fast, flashy automobiles, while Barbies might shape ideas about beauty and self-image. For the generation who grew up during the Atomic Age—the post–World War II era from roughly the mid-1940s to the early 1960s—the toys, games, and entertainment of their childhoods might have included things like atomic pistols, atomic trains, rings with tiny amounts of radioactive elements, and comic books, puzzles, and music about nuclear weapons.
M. A. Talarico, P. F. F. Frutuoso e Melo, I. B. Gomes
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 745-764
Technical Paper | doi.org/10.1080/00295450.2022.2155021
Articles are hosted by Taylor and Francis Online.
This study presents a method for inferring the potential variabilities that need to be computed in a model developed using the Functional Resonance Analysis Method (FRAM) by means of adapting a questionnaire used in the Resilience Analysis Grid method. The proposed method, called in this study the indirect method, is compared to the technique prescribed in FRAM to acquire variabilities for each system’s functions in the specific case of a FRAM model for obtaining a nuclear-powered submarine and its land support facility, hereinafter called the Combined Nuclear Facility (CNF). It should be noted that this model encompasses the design, the nuclear licensing process, and the construction of the CNF and aims to help to point out weaknesses in nuclear safety. The results show that 55.17% of the variability data obtained from both methods was identical (by exploratory data analysis), and a chi-square test of independence, conducted between method type and variability category, displayed that there was not a statistically significant association between method type and variability category. Thus, the null hypothesis cannot be rejected, and variability category and method type are independent of each other. Additionally, a qualitative comparison of a FRAM instantiation is presented using variabilities from the two methods, which resulted in small differences that apparently do not affect the overall result of the FRAM analysis. Therefore, it is concluded that the indirect method used to obtain information on the variability of functions of the model for obtaining the CNF is adequate.