ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
V. I. Vysotskii, V. D. Rusov, T. N. Zelentsova, M. V. Vysotskyy, V. P. Smolyar
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 716-729
Technical Paper | doi.org/10.1080/00295450.2022.2147389
Articles are hosted by Taylor and Francis Online.
This paper discusses the physical and mathematical foundations and possible applications of the intensity correlation method for spatial three-dimensional (3-D) positional detection (finding the 3-D spatial position) of distant γ-ray or neutrino sources in real time or after a set of registered events. This method is based on the correlation of intensities of event sequences measured by several spaced-apart distant detectors. A specific consideration is made of the possibility of using a correlation intensities method for the analysis of the processes within a nuclear reactor, for the search of the hypothetical intra-terrestrial georeactor (planetocentric nuclear fission reactors), for the optimization of the method of single-photon-emission-computed tomography in medicine, and for other applications. The conditions of successful applications of the intensity correlation method for these systems are determined. The main problem with this method is connected to a relatively low count rate of registered neutrino events.