ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Victor C. Leite, Elia Merzari, Roberto Ponciroli, Lander Ibarra
Nuclear Technology | Volume 209 | Number 5 | May 2023 | Pages 645-666
Technical Paper | doi.org/10.1080/00295450.2022.2151822
Articles are hosted by Taylor and Francis Online.
In this study, the capabilities of a physics-informed convolutional neural network (CNN) for reconstructing the temperature field from a limited set of measurements taken at the boundaries of internal flows are demonstrated. Such an approach enables the development of less invasive monitoring methods for real-time plant diagnostics. As a test case, a Molten Salt Fast Reactor (MSFR) design was selected. This circulating fuel reactor has received interest from both scientific and industrial communities due to its intrinsic safety and sustainability. Molten salt flows in such reactors, however, can present highly localized temperature peaks that can induce significant thermal stresses onto the vessel walls. At these local maxima, the salt temperature may exceed a thousand kelvins, which makes a direct measurement challenging or even unfeasible. The proposed CNN algorithm allows one to detect indirectly such discontinuities through an accurate, albeit indirect, temperature measurement method during reactor operation. The datasets employed to train and test the machine learning models in the present work were generated with Nek5000, a computational fluid dynamics (CFD) code developed at Argonne National Laboratory. The CNN algorithm is trained with CFD results that span a set of MSFR operational power and flow ranges. To demonstrate the efficacy of the algorithm, predictions are made for test cases contained within the training range but for which the CFD data were not used when training. Results demonstrate that the proposed technique properly characterizes temperature peaks and distributions within the domain for a broad range of scenarios.