ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Ivars Neretnieks
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 604-621
Technical Paper | doi.org/10.1080/00295450.2022.2136440
Articles are hosted by Taylor and Francis Online.
Water flows in only a small fraction of the total area of the fractures in fractured rocks. The width of the “channels” is often in the range of centimeters to tens of centimeters. Nuclides can diffuse into and out of the porous rock matrix, which causes them to be significantly retarded compared to the water velocity. In discrete facture networks, diffusion is modeled to be linear and perpendicular to the fracture surface. From a narrow channel, the diffusion cloud would then be as wide as the channel. When the nuclide has propagated farther than the channel width, the diffusion will become essentially radial, which allows the nuclide flux to increase enormously. For the times of interest for a repository for high-level nuclide waste, this will increase nuclide flux into the matrix by tens to thousands of times, and consequently, the nuclide retardation in the flowing water. Radial diffusion was not invoked in the performance assessment of the Forsmark site, which in January 2022 was chosen by the government to locate Sweden’s high-level waste repository. It is shown, using data from this site, that the effect of radial diffusion from the narrow channels considerably increases the retardation of any escaping radionuclides, potentially allowing for the use of thinner copper canisters.