ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Yang Hong Jung, Hee Moon Kim
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 595-603
Technical Paper | doi.org/10.1080/00295450.2022.2133935
Articles are hosted by Taylor and Francis Online.
The oxide layer of atomized U-Mo particle nuclear fuel was analyzed using the electron probe microanalyzer (EPMA) wavelength dispersive spectroscopy (WDS) image mapping function. The density of the used nuclear fuel was 2.6 gU/cm3 and the burnup was 16.4%. Typically, measurements of the oxide layer of most nuclear fuel specimens that have been irradiated for research and experimental purposes in the Korea Atomic Energy Research Institute HANARO research reactor have been performed using metallographic equipment. But an oxide layer was not observed in the nuclear fuel used in this study. Therefore, we conducted this study to confirm the presence and thickness of the oxide layer using EPMA WDS image mapping analysis. We were able to confirm the existence of the oxide layer, but there were many shortcomings in determining the exact thickness of the oxide layer using only the identified X-ray image mapping. In this paper, we present a way to accurately measure the oxide layer by recalling the derived original X-ray values as Excel data. To accurately analyze the oxide layer derived from the image, a preliminary study was performed using samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU pressurized heavy water reactor. In the preliminary study, the exact thickness of the oxide layer measured by metallography and the results obtained by measuring the thickness of the oxide layer with Excel data obtained by X-ray mapping were compared, inferred, and applied to this study. In this study, a method of accurately measuring the thickness of an oxide layer using Excel data obtained by EPMA WDS image mapping of the oxide layer of plate-type fuel, which was not confirmed using metallography equipment, is described in detail.