ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Yang Hong Jung, Hee Moon Kim
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 595-603
Technical Paper | doi.org/10.1080/00295450.2022.2133935
Articles are hosted by Taylor and Francis Online.
The oxide layer of atomized U-Mo particle nuclear fuel was analyzed using the electron probe microanalyzer (EPMA) wavelength dispersive spectroscopy (WDS) image mapping function. The density of the used nuclear fuel was 2.6 gU/cm3 and the burnup was 16.4%. Typically, measurements of the oxide layer of most nuclear fuel specimens that have been irradiated for research and experimental purposes in the Korea Atomic Energy Research Institute HANARO research reactor have been performed using metallographic equipment. But an oxide layer was not observed in the nuclear fuel used in this study. Therefore, we conducted this study to confirm the presence and thickness of the oxide layer using EPMA WDS image mapping analysis. We were able to confirm the existence of the oxide layer, but there were many shortcomings in determining the exact thickness of the oxide layer using only the identified X-ray image mapping. In this paper, we present a way to accurately measure the oxide layer by recalling the derived original X-ray values as Excel data. To accurately analyze the oxide layer derived from the image, a preliminary study was performed using samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU pressurized heavy water reactor. In the preliminary study, the exact thickness of the oxide layer measured by metallography and the results obtained by measuring the thickness of the oxide layer with Excel data obtained by X-ray mapping were compared, inferred, and applied to this study. In this study, a method of accurately measuring the thickness of an oxide layer using Excel data obtained by EPMA WDS image mapping of the oxide layer of plate-type fuel, which was not confirmed using metallography equipment, is described in detail.