ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Karen Dawn Colins
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 582-594
Technical Paper | doi.org/10.1080/00295450.2022.2131953
Articles are hosted by Taylor and Francis Online.
From the published results of experiments investigating the effects of delayed hydride cracking (DHC) on spent fuel Zircaloy cladding integrity, relevant data have been extracted and re-analyzed, taking advantage of inferential statistics and an information-theoretic model selection criterion. Statistical tolerance intervals, the method of maximum likelihood estimation, and the Akaike information criterion, corrected for small sample size, were applied to a small sample of measured values of the threshold stress-intensity factor . The purpose was to create a well-grounded probability density function for use in a mathematical model correlating random variates of with important conditions for the initiation of crack growth by DHC, specifically, cladding hoop stress and the depth and shape of surface flaws. A selection criterion purposely designed for small sample sizes and the robust nature of inferential statistics were ideally suited for the intended reevaluation. The fidelity of the mathematical model was protected by the exclusion of any simplifying approximations, e.g., substitution of constants or single-valued descriptive statistics for variables. The probabilistic effect of the random variable was thereby precisely mapped onto the linearly correlated variable, threshold cladding hoop stress, as a function of surface flaw depth and shape. Contour plots of the results constitute significant improvements over previous quantitative single-point estimates of the effects of DHC on spent fuel Zircaloy cladding integrity.