ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Chiradeep Gupta
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 560-581
Technical Paper | doi.org/10.1080/00295450.2022.2143730
Articles are hosted by Taylor and Francis Online.
Ductile-to-brittle transition (DBT) characteristics of three steels for reactor pressure vessel (RPV) belt line application are analyzed from new parameters based on model functions describing the strength and toughness characteristics of the materials. In order to estimate nil-ductility temperature (NDT) from strength property, a strain rate–compensated temperature parameter based on the thermally activated deformation of materials is adopted. A measure of NDT is determined from tensile strength properties for the first time assuming an estimated notch tip strain rate at the lower shelf. It is estimated to be 110, 42, and 106 K for the Cr-Mo-V-Ni, 20MnMoNi55, and A533B steels, respectively. The measure of ductile-to-brittle transition temperature (DBTT) in steels using 41-J Charpy impact-absorbed energy on the basis of a logistic class of functions is compared and shown to be equivalent with those obtained from fitting the tanh model equation.
A bi-logistic function based on the concept of separable parameters representing the fracture of ductile and brittle zones in steels within the DBTT regime was applied to model the Charpy impact energy behavior of the three steels. The bi-logistic function-fitting parameters yielded a new measure of brittleness as a DBT characteristic of steels that correlated well with other measures of transition temperature of the selected RPV steels. The parameters from the hyperbolic and logistic fitting were used to develop a model relationship suitable for the generation of a master curve based on Charpy energy in exponential form that unifies the transition temperature behavior of the selected western and eastern RPV materials. The model relationship is also found to closely predict ~5 K of the reference temperature To determined as per American Society for Testing and Materials standard E1921 of the selected RPV steels.