ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Tetsuya Mouri, Masayuki Naganuma, Shigeo Ohki
Nuclear Technology | Volume 209 | Number 4 | April 2023 | Pages 532-548
Technical Paper | doi.org/10.1080/00295450.2022.2133514
Articles are hosted by Taylor and Francis Online.
This paper deals with a conceptual study on a plutonium (Pu) and minor actinide (MA) burning fast reactor core for the distant future phaseout of a fast reactor fuel cycle after it is commercialized and used for a long time. This burning core aims to reduce the Pu and MA inventories contained in the fuel cycle through multiple recycling. A key point for the core design is the degradation of Pu and MAs during multiple recycling. This degradation affects the feasibility of the nuclear design by increasing the sodium void reactivity and decreasing the absolute value of the Doppler constant. A feasible core concept was found by incorporating the following three factors to improve the reactivity coefficients: core geometry flattening, fuel burnup reduction, and use of silicon carbide (SiC) in the cladding and wrapper tubes. Notably, softening the neutron spectrum using the SiC structural material not only improved the reactivity coefficients but also indirectly mitigated the degradation of Pu and MAs. Consequently, the designed core allowed for multiple recycling to continue until the Pu and MAs reduced significantly, particularly by about 99% in a phaseout scenario starting from a fast reactor fleet of 30-GWe nuclear power capacity. Fast reactors were found to have the potential to become self-contained energy systems that can minimize the inventories of Pu they produced themselves, as well as long-lived MAs. Fast reactors can be among the important options for environmental burden reduction in the future.