ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
October 2024
Latest News
Westinghouse reorganization creates two new business units
Westinghouse Electric Company has announced that it will create two new global business units from its Operating Plant Services business. Effective January 1, 2025, the new units will be Long-Term Operations and Outage & Maintenance Services.
A. J. Palmer, R. S. Skifton, D. C. Haggard, W. D. Swank, M. Scervini, G. L. Hawkes, C. B. T. Pham, T. L. Checketts
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 448-470
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2065873
Articles are hosted by Taylor and Francis Online.
High-temperature gas reactor irradiation experiments create unique challenges for thermocouple-based temperature measurements. High-temperature industrial thermocouples suffer rapid decalibration due to transmutation of the thermoelements from neutron absorption. For lower-temperature applications, Type K and Type N thermocouples are affected by neutron irradiation only to a limited extent. But until recently, the use of these nickel-based thermocouples was limited when the temperature exceeded 1050°C due to drift related to phenomena other than nuclear irradiation. Certain portions of the AGR-5/6/7 experiment experienced temperatures higher than any of the previous AGR tests, up to 1500°C. Recognizing the limitations of existing thermometry to measure such high temperatures, the sponsor of the AGR-5/6/7 test supported a development and testing program for thermocouples capable of low-drift operation at temperatures above 1100°C. This program included additional development of high-temperature irradiation-resistant thermocouples based on molybdenum/niobium thermoelements, which have been studied at Idaho National Laboratory since circa 2004. A step change in accuracy and long-term stability of this thermocouple type was achieved as part of the AGR-5/6/7 thermometry development program. Additionally, long-term testing (7000+ h) at 1250°C of Type N thermocouples utilizing a customized sheath developed at the University of Cambridge has been completed with excellent low-drift results. The results of this testing as well as testing of the improved high-temperature irradiation-resistant design are reported herein. Both the improved high-temperature irradiation-resistant and the Cambridge Type N thermocouple types were incorporated into the AGR-5/6/7 test, which began irradiation in February 2018 and was completed in July 2020. A summary of the performance of the thermocouples incorporated into the AGR-5/6/7 test is included herein.