Electrical cables provide essential functions, such as delivery of power or instrumentation signals for monitoring systems. Most cables installed in industrial applications are constructed with organic polymer insulations that can become brittle, crack, or degrade over time from exposure to harsh environmental conditions, such as elevated temperatures, moisture, vibration, mechanical shock, and radiation. This paper describes an overall strategy for assessing the health and managing the aging of cables during the operating life of an industrial facility. This strategy involves performing condition assessments and monitoring of electrical cables using both in situ and laboratory testing techniques. It includes in situ testing to identify anomalies in the circuits, such as degraded terminations, splices, connections, and degraded sections of cable insulation, as well as as-found evaluations to determine the current condition of installed cables. These cable condition evaluations provide important information about the current state of the cable circuits. Moreover, the test results can be used to trend/monitor age-related degradation and estimate the remaining useful life of installed cables.