ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Xingang Zhao, Xinyan Wang, Michael W. Golay
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 401-418
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2142445
Articles are hosted by Taylor and Francis Online.
Future advances in nuclear power technologies call for enhanced operator advice and autonomous control capabilities that can leverage simpler designs and increased safety features to reduce reliance on human labor. One of the first tasks in the development of such capabilities is the formulation of symptom-based conditional failure probabilities for the plant structures, systems, and components (SSCs) of interest. The primary goal is to aid plant personnel in (1) deducing the probabilistic performance status of the monitored SSCs and (2) detecting impending faults/failures. The task of estimating conditional failure probability is a bidirectional inference problem, and a logical approach is to use the Bayesian network (BN) method. As a knowledge-based explainable artificial intelligence tool and a probabilistic graphical model, BN offers reasoning capability under uncertainty, graphical representation emulating physical behavior of the target SSC, and interpretability of the model structure and results. This paper provides a systematic overview of the BN technique and the software tools for implementing BN models, along with the associated knowledge representation and reasoning paradigm. Both operational data and expert judgment can be readily incorporated into the knowledge base of a BN model. The challenges with data availability are highlighted, and the general approach to target SSC identification is presented. The focus is on failure-prone and risk-important balance of plant assets, especially for cases with strong operator involvement. Two example case studies on the failure of (1) a centrifugal pump and (2) an electric motor are conducted to demonstrate the usefulness and technical feasibility of the proposed BN-based fault diagnostic system using an expert system shell.