ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Xingang Zhao, Xinyan Wang, Michael W. Golay
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 401-418
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2142445
Articles are hosted by Taylor and Francis Online.
Future advances in nuclear power technologies call for enhanced operator advice and autonomous control capabilities that can leverage simpler designs and increased safety features to reduce reliance on human labor. One of the first tasks in the development of such capabilities is the formulation of symptom-based conditional failure probabilities for the plant structures, systems, and components (SSCs) of interest. The primary goal is to aid plant personnel in (1) deducing the probabilistic performance status of the monitored SSCs and (2) detecting impending faults/failures. The task of estimating conditional failure probability is a bidirectional inference problem, and a logical approach is to use the Bayesian network (BN) method. As a knowledge-based explainable artificial intelligence tool and a probabilistic graphical model, BN offers reasoning capability under uncertainty, graphical representation emulating physical behavior of the target SSC, and interpretability of the model structure and results. This paper provides a systematic overview of the BN technique and the software tools for implementing BN models, along with the associated knowledge representation and reasoning paradigm. Both operational data and expert judgment can be readily incorporated into the knowledge base of a BN model. The challenges with data availability are highlighted, and the general approach to target SSC identification is presented. The focus is on failure-prone and risk-important balance of plant assets, especially for cases with strong operator involvement. Two example case studies on the failure of (1) a centrifugal pump and (2) an electric motor are conducted to demonstrate the usefulness and technical feasibility of the proposed BN-based fault diagnostic system using an expert system shell.