ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Hongbin Zhang, Han Bao, Tate Shorthill, Edward Quinn
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 377-389
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2076486
Articles are hosted by Taylor and Francis Online.
Upgrading the existing analog instrumentation and control (I&C) systems to state-of-the-art digital I&C (DI&C) systems will greatly benefit existing light water reactors. However, the issue of software common cause failure (CCF) remains an obstacle in terms of qualification for digital technologies. Existing analyses of CCFs in I&C systems mainly focus on hardware failures. With the application and upgrading of new DI&C systems, design flaws could cause software CCFs to become a potential threat to plant safety, considering that most redundancy designs use similar digital platforms or software in their operating and application systems. With complex multilayer redundancy designs to meet the single failure criterion, these I&C safety systems are of particular concern in U.S. Nuclear Regulatory Commission licensing procedures. In Fiscal Year 2019, the Risk-Informed Systems Analysis (RISA) Pathway of the U.S. Department of Energy’s Light Water Reactor Sustainability Program initiated a project to develop a risk assessment strategy for delivering a strong technical basis to support effective, licensable, and secure DI&C technologies for digital upgrades and designs. An integrated risk assessment for the DI&C process was proposed for this strategy to identify potential key digital-induced failures, implement reliability analyses of related digital safety I&C systems, and evaluate the unanalyzed sequences introduced by these failures (particularly software CCFs) at the plant level. This paper summarizes these RISA efforts in the risk analysis of safety-related DI&C systems at Idaho National Laboratory.