ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Hongbin Zhang, Han Bao, Tate Shorthill, Edward Quinn
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 377-389
Technical Paper—Instrumentation and Controls | doi.org/10.1080/00295450.2022.2076486
Articles are hosted by Taylor and Francis Online.
Upgrading the existing analog instrumentation and control (I&C) systems to state-of-the-art digital I&C (DI&C) systems will greatly benefit existing light water reactors. However, the issue of software common cause failure (CCF) remains an obstacle in terms of qualification for digital technologies. Existing analyses of CCFs in I&C systems mainly focus on hardware failures. With the application and upgrading of new DI&C systems, design flaws could cause software CCFs to become a potential threat to plant safety, considering that most redundancy designs use similar digital platforms or software in their operating and application systems. With complex multilayer redundancy designs to meet the single failure criterion, these I&C safety systems are of particular concern in U.S. Nuclear Regulatory Commission licensing procedures. In Fiscal Year 2019, the Risk-Informed Systems Analysis (RISA) Pathway of the U.S. Department of Energy’s Light Water Reactor Sustainability Program initiated a project to develop a risk assessment strategy for delivering a strong technical basis to support effective, licensable, and secure DI&C technologies for digital upgrades and designs. An integrated risk assessment for the DI&C process was proposed for this strategy to identify potential key digital-induced failures, implement reliability analyses of related digital safety I&C systems, and evaluate the unanalyzed sequences introduced by these failures (particularly software CCFs) at the plant level. This paper summarizes these RISA efforts in the risk analysis of safety-related DI&C systems at Idaho National Laboratory.