ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Hanna Koskinen, Jari Laarni, Marja Liinasuo, Leena Salo
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 332-345
Technical Paper—Human-Machine Interface Technologies | doi.org/10.1080/00295450.2022.2087840
Articles are hosted by Taylor and Francis Online.
The Systems Usability Case (SUC) approach enables a requirement-based human factors (HF) evaluation of complex technical systems that may cover the entire verification and validation process. SUC is based on the Safety Case approach and on the Systems Usability (SU) construct. One of the main aims of establishing a Safety Case is to bring the arguments and evidence for safety to the front in such a way that the reasoning supports the work of a regulator or licensing organization. In the end, the approach enables evaluating the SU of a system and making a reasonable solid argument about the acceptance of the system for use. The question is how the conclusions are reached through a reasoning process in which the arguments are made about the evidence [i.e., identified human engineering discrepancies (HEDs)] to approve or reject the claim concerning the quality of the system. The paper presents an application of SUC to real data from an integrated system validation of the modernized control room (CR) of the Loviisa nuclear power plant. The results of the validation are discussed from the point of view of how the SUC approach enables forming a statement about the acceptance of the CR. Moreover, practical examples are given to demonstrate the identified HF issues and how they were handled in the validation process. The paper provides a general framework for handling of HEDs and for their resolution that can be used in the consolidation of validation test results in a real-world validation project.