ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
LLNL offers tools to model the economics of inertial fusion power plants
Lawrence Livermore National Laboratory has designed a model to help assess the economic impact of future fusion power plant operations—specifically, the operation of inertial fusion energy (IFE) power plants. Further, it has made its Generalized Economics Model (GEM) for Fusion Technology—an Excel spreadsheet—available for download.
Meenu Sethu, Bhavya Kotla, Darrell Russell, Mahboubeh Madadi, Nesar Ahmed Titu, Jamie Baalis Coble, Ronald L. Boring, Klaus Blache, Vivek Agarwal, Vaibhav Yadav, Anahita Khojandi
Nuclear Technology | Volume 209 | Number 3 | March 2023 | Pages 276-294
Critical Review—Human-Machine Interface Technologies | doi.org/10.1080/00295450.2022.2067461
Articles are hosted by Taylor and Francis Online.
Human factors and ergonomics have played an essential role in increasing the safety and performance of operators in the nuclear energy industry. In this critical review, we examine how artificial intelligence (AI) technologies can be leveraged to mitigate human errors, thereby improving the safety and performance of operators in nuclear power plants (NPPs). First, we discuss the various causes of human errors in NPPs. Next, we examine the ways in which AI has been introduced to and incorporated into different types of operator support systems to mitigate these human errors. We specifically examine (1) operator support systems, including decision support systems, (2) sensor fault detection systems, (3) operation validation systems, (4) operator monitoring systems, (5) autonomous control systems, (6) predictive maintenance systems, (7) automated text analysis systems, and (8) safety assessment systems. Finally, we provide some of the shortcomings of the existing AI technologies and discuss the challenges still ahead for their further adoption and implementation to provide future research directions.