Experimentally characterizing radioactive materials can be time consuming and expensive. This is mainly due to the size requirements of inspected specimens. Due to the growing interest in using additively manufactured components in next-generation reactors, there is an urgent need to develop new accelerated testing techniques with regard to characterizing radiation damage. This will ensure a more timely certification of the unique material structures inherent to additively manufactured parts. In this study, we investigate a means to reduce the time investment, and thus the human exposure to radioactive specimens in need of experimental characterization. We determine the feasibility of using ultra-small specimens in lieu of much larger specimens to characterize bulk material properties before and after irradiation. Experiments were conducted to investigate this technique and compare it to conventional bulk irradiations and characterization activities. It was found that discernable radiation damage existed in the ultra-small specimens even after relatively short neutron irradiation times. The results also demonstrate decreased radiation hardening in additive manufactured Inconel 625 material relative to its wrought forms.