ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Amanda D. E. Foley, Swomitra K. Mohanty, Glenn E. Sjoden
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 228-243
Technical Paper | doi.org/10.1080/00295450.2022.2131972
Articles are hosted by Taylor and Francis Online.
Cadmium zinc telluride (CZT) spectrometers have been considered for objectives and missions with variable ambient temperatures. Spectrometer-grade crystals of various sizes have been studied under conditions as low as −40°C for 2 × 2 × 2 and 5 × 5 × 2-mm3 crystals, and −10°C for 5 × 5 × 5-mm3 crystals for resolution improvement spanning 5.9-, 59.5-, and 122-keV photo peak energies. It is unclear from previously published data if cooling the spectrometer-grade crystals beyond −10°C results in increased resolution improvement or if the effect occurs with higher-energy photo peaks and trends among multiple crystals from the same manufacturer. Therefore, we acquired two CZT crystals from Kromek and cooled them in an insulated box to −25°C. Our measurements were performed every 5°C, and tested with 241Am or 241Am/152Eu mixed sources. The 241Am peaks were compared for both crystals, and the higher-energy resolution changes were explored using the mixed source.
Overall, at 59.5 keV, both crystals yielded 3% to 4% resolution improvement for the cooling cycle and 6% improvement during the warming cycle. Resolution performance varied between the two tested crystals, and each had a different temperature where we observed optimum resolution. The 121.8-keV peak resolution improved by 1.2% for the cooling cycle and 3.6% for the warming cycle. There were no discernable resolution increases or changes for the two higher-energy peaks, 224.7 and 334.3 keV, respectively. Slight cooling of the CZT crystals can increase resolution performance by 4% in the lower-energy region.