ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Amanda D. E. Foley, Swomitra K. Mohanty, Glenn E. Sjoden
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 228-243
Technical Paper | doi.org/10.1080/00295450.2022.2131972
Articles are hosted by Taylor and Francis Online.
Cadmium zinc telluride (CZT) spectrometers have been considered for objectives and missions with variable ambient temperatures. Spectrometer-grade crystals of various sizes have been studied under conditions as low as −40°C for 2 × 2 × 2 and 5 × 5 × 2-mm3 crystals, and −10°C for 5 × 5 × 5-mm3 crystals for resolution improvement spanning 5.9-, 59.5-, and 122-keV photo peak energies. It is unclear from previously published data if cooling the spectrometer-grade crystals beyond −10°C results in increased resolution improvement or if the effect occurs with higher-energy photo peaks and trends among multiple crystals from the same manufacturer. Therefore, we acquired two CZT crystals from Kromek and cooled them in an insulated box to −25°C. Our measurements were performed every 5°C, and tested with 241Am or 241Am/152Eu mixed sources. The 241Am peaks were compared for both crystals, and the higher-energy resolution changes were explored using the mixed source.
Overall, at 59.5 keV, both crystals yielded 3% to 4% resolution improvement for the cooling cycle and 6% improvement during the warming cycle. Resolution performance varied between the two tested crystals, and each had a different temperature where we observed optimum resolution. The 121.8-keV peak resolution improved by 1.2% for the cooling cycle and 3.6% for the warming cycle. There were no discernable resolution increases or changes for the two higher-energy peaks, 224.7 and 334.3 keV, respectively. Slight cooling of the CZT crystals can increase resolution performance by 4% in the lower-energy region.