ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Don’t get boxed in: Entergy CNO Kimberly Cook-Nelson shares her journey
Kimberly Cook-Nelson
For Kimberly Cook-Nelson, the path to the nuclear industry started with a couple of refrigerator boxes and cellophane paper. Her sixth-grade science project was inspired by her father, who worked at Seabrook power station in New Hampshire as a nuclear operator.
“I had two big refrigerator boxes I taped together. I cut the ‘primary operating system’ and the ‘secondary system’ out of them. Then I used different colored cellophane paper to show the pressurized water system versus the steam versus the cold cooling water,” Cook-Nelson said. “My dad got me those little replica pellets that I could pass out to people as they were going by at my science fair.”
Hossein Zayermohammadi Rishehri, Majid Zaidabadi Nejad
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 193-213
Technical Paper | doi.org/10.1080/00295450.2022.2120319
Articles are hosted by Taylor and Francis Online.
Small modular reactors (SMRs) can be a significant option for developing countries with low energy demand. Due to the lack of sufficient experience in the field of SMRs, extensive research should be done on SMRs to improve the performance of these systems. Using dual surface-cooled fuel (DSCF) is one of the methods that can increase the performance of SMRs. In this study, for the first time the core of a NuScale reactor (as a SMR) is designed based on DSCF without any change in core dimensions by analyzing neutronic, thermal-hydraulic, and natural circulation parameters. In addition, according to the departure from nucleate boiling ratio, the uprate of the thermal power in a reactor using DSCF is investigated. For this purpose, typical solid fuels as well as DSCFs under clean-cold and full-power conditions are primarily modeled for the four different lattices that maintain the same assembly dimensions, mass, and enrichment fuels as the original fuel assembly. The effective multiplication factor, and power peaking factor, as important neutronic parameters, are calculated. Then the departure from nucleate boiling, pressure drop, velocity, and temperature distribution calculations, as important thermal-hydraulic and natural circulation parameters, are accomplished via a computational fluid dynamics code. The best core configuration of DSCF for the NuScale core is determined based on comparing the neutronic, thermal-hydraulic, and natural circulation parameters of various lattices and typical solid fuels. Regarding the final result, a DSCF assembly configuration, called a 12 × 12 assembly, is suggested.