ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
October 2024
Fusion Science and Technology
Latest News
From remediation to production: The DOE’s Cleanup to Clean Energy initiative
On July 28, 2023, the Department of Energy launched its Cleanup to Clean Energy initiative, an effort to repurpose underutilized DOE-owned property—portions of which were previously used in the nation’s nuclear weapons program—into the sites of clean-energy generation.
F.-X. Ouf, M. De Mendonca Andrade, H. Feuchter, S. Duval, C. Volkringer, T. Loiseau, F. Salm, P. Ainé, L. Cantrel, A. Gil-Martin, F. Hurel, C. Lavalette, P. March, P. Nerisson, J. Nos, L. Bouilloux
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 169-192
Technical Paper | doi.org/10.1080/00295450.2022.2129274
Articles are hosted by Taylor and Francis Online.
Experimental results are reported on the airborne release, under fire conditions, of hazardous materials dissolved in a mixture of organic solvents [tributylphosphate (TBP) and hydrogenated tetrapropylene (HTP)] representative of the nuclear fuel recycling process. Cerium and ruthenium have been considered, respectively, as stable and volatile fission products that eventually could be released as airborne particles during thermal degradation of contaminated and inflammable liquids. Airborne release fractions (ARFs) and their experimental uncertainties have been determined. Considering fire involving contaminated organic solvents, higher ARFs are reported for ruthenium Ru(+III) (0.99 ± 1.20%) in comparison with cerium [0.22 ± 0.31% and 0.20 ± 0.28% for Ce(+III) and Ce(+IV), respectively]. This discrepancy is partially due to the volatility of ruthenium formed under these conditions. Considering configurations involving an aqueous nitric acid phase placed below contaminated solvents, boiling of this phase enhances the release of contaminant materials: 1.78 ± 1.06% and 1.01 ± 1.31% for Ce(+III) and Ce(+IV), respectively, and 12.41 ± 29.45% for Ru(+III). Analysis of the size distribution, morphology, and chemical composition of the released particles and droplets emitted during HTP/TBP bubble collapse are reported, highlighting the contribution of bubble bursting at the solvent surface to airborne release.