ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Justin D. Yarrington, Jason L. Schulthess, Spencer H. Parker, Jordan M. Argyle, Clayton G. Turner, John D. Stanek, Cad L. Christensen
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 127-143
Technical Paper | doi.org/10.1080/00295450.2022.2116304
Articles are hosted by Taylor and Francis Online.
The performance of follow-on experiments using irradiated nuclear fuel at any point in its lifecycle is a critical step in understanding phenomena and behavior. Transient experiments with high-burnup fuel can deepen the understanding of fuel fragmentation, relocations, and dispersal under loss-of-coolant accidents. An advanced autonomous welding process to refabricate commercial fuel rods inside a hot cell was created and tested to enable flexible experiment approaches on fuels irradiated in commercial and test reactors. Irradiated light water reactor fuel test pins from experiments performed at the Advanced Test Reactor (ATR) at Idaho National Laboratory were used to demonstrate the refabrication process.
The welding process was found to be sensitive to welding parameters but flexible such that multiple passes could be performed on the same location until a hermetic weld was obtained. The refabrication of rodlets and successful welds was also found to be sensitive to the preparation of the irradiated cladding and endcaps. Thorough defueling of the fuel at the weld location and proper sizing of the endcaps and backing material mitigated these issues. The use of strategically located heat sinks in contact with the cladding and endcap materials also increased welding and refabrication success.
For this work, the test pins were sectioned to remove the original endcaps and fuel was removed from both ends of each rodlet. The reassembly of the rodlets was then completed in four steps, which included the press fitting of new endcaps, the circumferential welding of rodlet endcaps to the cladding, rodlet pressurization in a pressure chamber, and seal welding the rodlet under pressure. The integrity of the refabricated rodlets was then verified via helium leak checking inside a vacuum chamber. The advanced welding system is capable of refabricating rodlets up to 380 mm in length, and repressurizing them up to 15 500 kPa. The refabricated lengths of the rodlets used in this work ranged from 149 to 165 mm and the refabricated fuel stack heights ranged from 70.4 to 79.8 mm. The rodlets were pressurized with argon to an average pressure of 3617 kPa, and the average leak rate after refabrication was 6.7∙10−8∙cm3∙s−1.