ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Justin D. Yarrington, Jason L. Schulthess, Spencer H. Parker, Jordan M. Argyle, Clayton G. Turner, John D. Stanek, Cad L. Christensen
Nuclear Technology | Volume 209 | Number 2 | February 2023 | Pages 127-143
Technical Paper | doi.org/10.1080/00295450.2022.2116304
Articles are hosted by Taylor and Francis Online.
The performance of follow-on experiments using irradiated nuclear fuel at any point in its lifecycle is a critical step in understanding phenomena and behavior. Transient experiments with high-burnup fuel can deepen the understanding of fuel fragmentation, relocations, and dispersal under loss-of-coolant accidents. An advanced autonomous welding process to refabricate commercial fuel rods inside a hot cell was created and tested to enable flexible experiment approaches on fuels irradiated in commercial and test reactors. Irradiated light water reactor fuel test pins from experiments performed at the Advanced Test Reactor (ATR) at Idaho National Laboratory were used to demonstrate the refabrication process.
The welding process was found to be sensitive to welding parameters but flexible such that multiple passes could be performed on the same location until a hermetic weld was obtained. The refabrication of rodlets and successful welds was also found to be sensitive to the preparation of the irradiated cladding and endcaps. Thorough defueling of the fuel at the weld location and proper sizing of the endcaps and backing material mitigated these issues. The use of strategically located heat sinks in contact with the cladding and endcap materials also increased welding and refabrication success.
For this work, the test pins were sectioned to remove the original endcaps and fuel was removed from both ends of each rodlet. The reassembly of the rodlets was then completed in four steps, which included the press fitting of new endcaps, the circumferential welding of rodlet endcaps to the cladding, rodlet pressurization in a pressure chamber, and seal welding the rodlet under pressure. The integrity of the refabricated rodlets was then verified via helium leak checking inside a vacuum chamber. The advanced welding system is capable of refabricating rodlets up to 380 mm in length, and repressurizing them up to 15 500 kPa. The refabricated lengths of the rodlets used in this work ranged from 149 to 165 mm and the refabricated fuel stack heights ranged from 70.4 to 79.8 mm. The rodlets were pressurized with argon to an average pressure of 3617 kPa, and the average leak rate after refabrication was 6.7∙10−8∙cm3∙s−1.