ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Holly Trellue, Chase Taylor, Erik Luther, Theresa Cutler, Aditya Shivprasad, J. Keith Jewell, Dasari V. Rao, Michael Davenport
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S123-S135
Technical Paper | doi.org/10.1080/00295450.2022.2043088
Articles are hosted by Taylor and Francis Online.
As microreactors evolve to become a more affordable and efficient worldwide energy source, the development of moderator material within the system to decrease the required mass of low-enriched uranium fuel is important. The use of low- instead of high-enriched uranium in small nuclear reactors stems from recent national policies associated with nonproliferation. New designs are being developed for a range of applications and nuclear space systems in particular. Using system geometries such as those described in this paper, the next step is to advance the technology readiness level of moderator material such as delta-yttrium hydride (YHx,x = 1.6–2.0) so that it can be qualified for use in a microreactor system. Although characterization of unirradiated material has been documented previously, to fully understand the performance of this material, behavior in relevant irradiation environments must occur. This paper describes the fabrication of yttrium hydride samples through innovative techniques and how these samples were tested in two relevant neutron environments. These two experiments include (1) a critical experiment performed at the National Criticality Experiments Research Center (NCERC) to evaluate reactivity changes in a neutron-critical environment and (2) irradiation in the Advanced Test Reactor (ATR) to assess structural integrity/material form, thermophysical data, hydrogen permeability, and other features post irradiation. For this purpose, hundreds of samples were fabricated for the NCERC and ATR experiments and are described within this paper.