ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
T. Cutler, H. Trellue, M. Blood, T. Grove, E. Luther, N. Thompson, N. Wynne
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S92-S108
Technical Paper | doi.org/10.1080/00295450.2022.2027146
Articles are hosted by Taylor and Francis Online.
The Hypatia measurement campaign with YHx moderators and highly enriched uranium (HEU) was completed in January 2021 at the U.S. Department of Energy’s National Criticality Experiments Research Center at the Nevada National Security Site. This measurement campaign provided unique integral measurements based on two experimental configurations and investigated the temperature effects of yttrium hydride (YHX = 1.8 and 1.9) in a critical reactor system, which is of potential interest for microreactor designs. The Hypatia experiment consisted of a fuel column composed of HEU, 93 wt% 235U discs, encapsulated YHX, aluminum oxide heater plates, and other moderator and reflector materials (beryllium, depleted uranium, and graphite) inserted into a thick beryllium reflector. During the Hypatia experiment, baseline measurements were taken at room temperature. The aluminum oxide heater plates were specially designed and used for this project to increase the central core temperature to a range of temperatures, after which additional reactivity measurements were taken. Thermal and neutronic calculations predicted that YHX is a unique material that can exhibit a positive temperature coefficient of reactivity (i.e., reactivity can increase as the temperature in the YHX increases). Reactors using YHX should account for this unique feature during design, and the results of the Hypatia experiment significantly aid that process. For configuration 1, six different temperature reactivity measurements were taken with four YHX cans in the fuel column. For configuration 2, six different temperature reactivity measurements were taken with two YHX cans in the fuel column. The use of these two configurations provide a comparison of neutronic effects from the YHX cans versus other components. Preliminary conclusions show the positive temperature coefficient is similar but slightly less than predicted by simulations. These two sets of data will be used to separate the reactivity coefficients of the fuel and other materials in the fuel column.