ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2023 ANS Winter Conference and Expo
November 12–15, 2023
Washington, D.C.|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2023
Jul 2023
Latest Journal Issues
Nuclear Science and Engineering
October 2023
Nuclear Technology
Fusion Science and Technology
Latest News
National Museum of Nuclear Science and History explores “atomic” culture
For many of us, the toys of our childhood leave indelible marks on our consciousness, affecting our long-term perceptions and attitudes about certain things. Hot Wheels may inspire a lifelong fascination with fast, flashy automobiles, while Barbies might shape ideas about beauty and self-image. For the generation who grew up during the Atomic Age—the post–World War II era from roughly the mid-1940s to the early 1960s—the toys, games, and entertainment of their childhoods might have included things like atomic pistols, atomic trains, rings with tiny amounts of radioactive elements, and comic books, puzzles, and music about nuclear weapons.
T. Cutler, H. Trellue, M. Blood, T. Grove, E. Luther, N. Thompson, N. Wynne
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S92-S108
Technical Paper | doi.org/10.1080/00295450.2022.2027146
Articles are hosted by Taylor and Francis Online.
The Hypatia measurement campaign with YHx moderators and highly enriched uranium (HEU) was completed in January 2021 at the U.S. Department of Energy’s National Criticality Experiments Research Center at the Nevada National Security Site. This measurement campaign provided unique integral measurements based on two experimental configurations and investigated the temperature effects of yttrium hydride (YHX = 1.8 and 1.9) in a critical reactor system, which is of potential interest for microreactor designs. The Hypatia experiment consisted of a fuel column composed of HEU, 93 wt% 235U discs, encapsulated YHX, aluminum oxide heater plates, and other moderator and reflector materials (beryllium, depleted uranium, and graphite) inserted into a thick beryllium reflector. During the Hypatia experiment, baseline measurements were taken at room temperature. The aluminum oxide heater plates were specially designed and used for this project to increase the central core temperature to a range of temperatures, after which additional reactivity measurements were taken. Thermal and neutronic calculations predicted that YHX is a unique material that can exhibit a positive temperature coefficient of reactivity (i.e., reactivity can increase as the temperature in the YHX increases). Reactors using YHX should account for this unique feature during design, and the results of the Hypatia experiment significantly aid that process. For configuration 1, six different temperature reactivity measurements were taken with four YHX cans in the fuel column. For configuration 2, six different temperature reactivity measurements were taken with two YHX cans in the fuel column. The use of these two configurations provide a comparison of neutronic effects from the YHX cans versus other components. Preliminary conclusions show the positive temperature coefficient is similar but slightly less than predicted by simulations. These two sets of data will be used to separate the reactivity coefficients of the fuel and other materials in the fuel column.