ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Mark C. Messner, Guosheng Ye, T.-L. Sham
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S60-S72
Technical Paper | doi.org/10.1080/00295450.2022.2112112
Articles are hosted by Taylor and Francis Online.
High-temperature microreactors can play a role in developing reliable, portable energy sources for off-grid remote locations, microgrid concepts, and industrial process heat. Portability and passive safety criteria tend to skew microreactor structural component designs toward complex geometries, high thermal stresses, and design bases with large numbers of startup/shutdown cycles. Current design rules, as typified by Section III of the American Society of Mechanical Engineers (ASME) Boiler & Pressure Vessel Code, are less than optimal for these conditions, particularly for preliminary component designs where developers need to rapidly consider a large number of potential component configurations. This paper presents a design method targeted toward rapid, efficient evaluation of preliminary component designs using modern finite element analysis. The new method retains key connections with the ASME Code rules and design data while streamlining the design approach. This paper presents the design method, several verification examples illustrating the similarities and differences between the new method and the current ASME rules, and the application of the new approach to the evaluation of a test article mimicking key features of a heat pipe–cooled microreactor.