ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Donna Post Guillen
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages S21-S40
Critical Review | doi.org/10.1080/00295450.2022.2055701
Articles are hosted by Taylor and Francis Online.
Microreactors, or very small, transportable or mobile nuclear reactors with a capacity of less than 20 MW(thermal), are being developed to provide heat and power for myriad applications in remote areas, military installations, emergency operations, humanitarian missions, and disaster relief zones. A wide variety of reactor types are under consideration, including sodium-cooled fast reactors, molten-salt reactors, very high-temperature gas reactors, and heat pipe reactors. One issue common to all microreactor designs is the need to remove heat from the core. The objective of this paper is to identify a spectrum of diverse approaches to thermal management that can be used develop advanced, high-performance heat removal systems to further enhance the expected performance of a 1- to 20-MW(thermal) nuclear reactor. The focus here is on concepts that can provide a passive means of heat removal and are new to nuclear reactors. Different types of passive heat removal strategies for microreactors are examined, including latent heat-transfer devices, such as various types of heat pipes, natural convection and conduction-radiation cooling, and other thermal devices, such as thermoelectrics and thermoacoustics, that can be used to provide power for auxiliary cooling. Many of these concepts have already been fielded in renewable energy systems. Concepts at different stages of technical maturity are outlined to present ideas that can push the boundaries of thermal management in present-day nuclear technology. Practical considerations relative to the integration of these concepts into nuclear systems are given.