ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Sylvian Kahane, Yair Ben-Dov (Birenbaum), Raymond Moreh
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 115-126
Technical Note | doi.org/10.1080/00295450.2022.2102847
Articles are hosted by Taylor and Francis Online.
Monoenergetic gamma beams (Δ ~ 10 eV) based on thermal neutron capture, in a nuclear reactor, using the V(n,γ) and Fe(n,γ) reactions were utilized for generating fast neutron sources from lead and thallium, respectively, via the 207Pb(γ,n) and 205Tl(γ,n) reactions. It so happens that one of the incident gamma lines of the V source, Eγ = 7163 keV, photoexcites by chance a resonance level in 207Pb, which emits neutrons at an energy of 423 keV. In a similar manner the incident gamma line at Eγ = 7646 keV of the Fe(n,γ) source photoexcites by chance a resonance level in the 205Tl isotope, which emits neutrons at an energy of 99 keV. The cross sections for the neutron emission process were measured and found to be σ(γ,n) = 35 ± 6 mb and 107 ± 17 mb, respectively, with intensities of the order of 104 n/s.