ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Kyle L. Walton, John D. Brockman, Sudarshan K. Loyalka
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 82-89
Technical Paper | doi.org/10.1080/00295450.2022.2108687
Articles are hosted by Taylor and Francis Online.
The diffusion of fission products (FPs) in reactor materials affects the nuclear source term. The diffusion coefficient itself is measured through various techniques. In the release method, it is of interest to know the initial distribution of the FPs in nuclear graphite or other materials from an exterior measurement like mass surface flux or cumulative mass release. In this paper, a Fredholm integral of the first kind is considered, relating the initial distribution to the cumulative release fraction of a diffusant from a spherically symmetric body. The Tikhonov regularization, conjugate gradient least-squares (CGLS) method, and algebraic reconstruction technique (ART) with nonnegativity and conserved mass constraints were compared to fractional release data from a simulated linear profile using data for Cs diffusion in a 0.32-cm sphere NBG-18 at 1090 K. The Tikhonov regularization was shown to provide a better estimation of the initial linear distribution than the CGLS and ART methods. The performance of the Tikhonov regularization was further examined with simulated constant, quartic, and exponential initial distributions. The Tikhonov regularization provided a reasonable recovery of the exponential profile, while the estimation of the linear, constant, and quartic profiles suffers from several issues.