ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Kyle L. Walton, John D. Brockman, Sudarshan K. Loyalka
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 82-89
Technical Paper | doi.org/10.1080/00295450.2022.2108687
Articles are hosted by Taylor and Francis Online.
The diffusion of fission products (FPs) in reactor materials affects the nuclear source term. The diffusion coefficient itself is measured through various techniques. In the release method, it is of interest to know the initial distribution of the FPs in nuclear graphite or other materials from an exterior measurement like mass surface flux or cumulative mass release. In this paper, a Fredholm integral of the first kind is considered, relating the initial distribution to the cumulative release fraction of a diffusant from a spherically symmetric body. The Tikhonov regularization, conjugate gradient least-squares (CGLS) method, and algebraic reconstruction technique (ART) with nonnegativity and conserved mass constraints were compared to fractional release data from a simulated linear profile using data for Cs diffusion in a 0.32-cm sphere NBG-18 at 1090 K. The Tikhonov regularization was shown to provide a better estimation of the initial linear distribution than the CGLS and ART methods. The performance of the Tikhonov regularization was further examined with simulated constant, quartic, and exponential initial distributions. The Tikhonov regularization provided a reasonable recovery of the exponential profile, while the estimation of the linear, constant, and quartic profiles suffers from several issues.