ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
October 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Growing the future nuclear energy workforce in the Volunteer State
The Volunteer State’s governor and representatives have made clear their intention to position Tennessee at the forefront of a nuclear energy growth surge over the next several years. They’re making the financial investment to back up this commitment, pledging $50 million to recruit the innovative and invest in the existing nuclear companies in the state.
In an interview with advocacy group Nuclear Matters, Gov. Bill Lee expressed his excitement and optimism for Tennessee’s nuclear future.
“Tennessee is one of the fastest growing states in the country,” he said. “Because of that, we have people and companies moving here and we need to have a dependable, reliable energy source.”
Po-Jung Chiu, Chung-Kung Lo, Tai-Hung Wu
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 53-68
Technical Paper | doi.org/10.1080/00295450.2022.2105633
Articles are hosted by Taylor and Francis Online.
We discuss the specific risk significance in the extended pre-defueled (PD) phase of the decommissioning process, particularly if spent fuels are still in the core due to the low-power and shutdown refueling plant operating state (POS). The issue of full-core discharge capability after permanent shutdown during the PD phase motivated this study on the evolution of system risks using a reference plant design of the two-unit/BWR-4/Mark-I.
The effects of the reactor core and the spent fuel pool (SFP) on the incorporative risks are explored. The probabilistic risk assessment methodology, including the technical elements, is systematically developed by defining two primary configurations from the internal event analysis under the models 30, 60, 180, 365, and 942 days after permanent shutdown, respectively. The movable refueling gate between the reactor core and the SFP, as well as the residual heat removal (RHR) system, have been subjected to two sensitivity studies on system configurations in order to examine the induced impacts by the refueling gate and cooling systems. MELCOR, a realistic thermal-hydraulic code, is utilized to determine the decay heat levels and the success criteria after shutdown. The two operator tasks are assumed to be independent in the situation of decreasing decay heat after shutdown and a long time available for human actions.
In addition, the WinNUPRA software package is used for the fuel uncovery sequence quantification. Plant-centered loss-of-offsite power (LOOP), flow diversion loss-of-coolant accidents (LOCAs) to the suppression pool via the RHR system, switchyard-centered LOOPs, and LOCAs in the connected systems via the RHR, have proven to be the most significant initiating events for the configurations. When compared to the low-power and shutdown refueling POS, the realistic quantification results in terms of fuel uncovery frequencies and the evolution of the risk profile for the basic and sensitivity configurations meet the expectations under the PD-phase condition of low-decay heat levels.