ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Ming Zhi Huang, Chong Zhou, Pu Yang, Wei Shi Wan, Zuo Kang Lin, Ye Dai
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 15-36
Technical Paper | doi.org/10.1080/00295450.2022.2096390
Articles are hosted by Taylor and Francis Online.
The existing thermal neutron molten salt reactor design has a complicated online processing system that has many technical difficulties. A thorium-based molten salt fast energy amplifier (TMSFEA) driven by a proton accelerator can operate stably for nearly 40 years at a rated thermal power of 300 MW without online processing. In order to simplify the core structure of TMSFEA, the core design is based on a hollow and moderator-free cylindrical geometry. The molten salt in the core serves as both fuel salt and spallation target. In this paper, based on the previous TMSFEA core neutron physics design, the core thermal-hydraulic design principles of TMSFEA are proposed, and a detailed core design with specific core structures as well as three-dimensional core thermal-hydraulic performance are obtained. Through computational fluid dynamics steady-state analysis, the arrangement of the core inlet and outlet and the shape of the core sidewall are optimized. Suitable distribution plates and skirt plates are proposed, and two corresponding lower plenum structures are designed to improve the flow field in the core. This study provides TMSFEA with core structures that meet the thermal-hydraulic design principles and also provides ideas for similar hollow reactor core designs.