ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Ming Zhi Huang, Chong Zhou, Pu Yang, Wei Shi Wan, Zuo Kang Lin, Ye Dai
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 15-36
Technical Paper | doi.org/10.1080/00295450.2022.2096390
Articles are hosted by Taylor and Francis Online.
The existing thermal neutron molten salt reactor design has a complicated online processing system that has many technical difficulties. A thorium-based molten salt fast energy amplifier (TMSFEA) driven by a proton accelerator can operate stably for nearly 40 years at a rated thermal power of 300 MW without online processing. In order to simplify the core structure of TMSFEA, the core design is based on a hollow and moderator-free cylindrical geometry. The molten salt in the core serves as both fuel salt and spallation target. In this paper, based on the previous TMSFEA core neutron physics design, the core thermal-hydraulic design principles of TMSFEA are proposed, and a detailed core design with specific core structures as well as three-dimensional core thermal-hydraulic performance are obtained. Through computational fluid dynamics steady-state analysis, the arrangement of the core inlet and outlet and the shape of the core sidewall are optimized. Suitable distribution plates and skirt plates are proposed, and two corresponding lower plenum structures are designed to improve the flow field in the core. This study provides TMSFEA with core structures that meet the thermal-hydraulic design principles and also provides ideas for similar hollow reactor core designs.