ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Ming Zhi Huang, Chong Zhou, Pu Yang, Wei Shi Wan, Zuo Kang Lin, Ye Dai
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 15-36
Technical Paper | doi.org/10.1080/00295450.2022.2096390
Articles are hosted by Taylor and Francis Online.
The existing thermal neutron molten salt reactor design has a complicated online processing system that has many technical difficulties. A thorium-based molten salt fast energy amplifier (TMSFEA) driven by a proton accelerator can operate stably for nearly 40 years at a rated thermal power of 300 MW without online processing. In order to simplify the core structure of TMSFEA, the core design is based on a hollow and moderator-free cylindrical geometry. The molten salt in the core serves as both fuel salt and spallation target. In this paper, based on the previous TMSFEA core neutron physics design, the core thermal-hydraulic design principles of TMSFEA are proposed, and a detailed core design with specific core structures as well as three-dimensional core thermal-hydraulic performance are obtained. Through computational fluid dynamics steady-state analysis, the arrangement of the core inlet and outlet and the shape of the core sidewall are optimized. Suitable distribution plates and skirt plates are proposed, and two corresponding lower plenum structures are designed to improve the flow field in the core. This study provides TMSFEA with core structures that meet the thermal-hydraulic design principles and also provides ideas for similar hollow reactor core designs.