ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Ming Zhi Huang, Chong Zhou, Pu Yang, Wei Shi Wan, Zuo Kang Lin, Ye Dai
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 15-36
Technical Paper | doi.org/10.1080/00295450.2022.2096390
Articles are hosted by Taylor and Francis Online.
The existing thermal neutron molten salt reactor design has a complicated online processing system that has many technical difficulties. A thorium-based molten salt fast energy amplifier (TMSFEA) driven by a proton accelerator can operate stably for nearly 40 years at a rated thermal power of 300 MW without online processing. In order to simplify the core structure of TMSFEA, the core design is based on a hollow and moderator-free cylindrical geometry. The molten salt in the core serves as both fuel salt and spallation target. In this paper, based on the previous TMSFEA core neutron physics design, the core thermal-hydraulic design principles of TMSFEA are proposed, and a detailed core design with specific core structures as well as three-dimensional core thermal-hydraulic performance are obtained. Through computational fluid dynamics steady-state analysis, the arrangement of the core inlet and outlet and the shape of the core sidewall are optimized. Suitable distribution plates and skirt plates are proposed, and two corresponding lower plenum structures are designed to improve the flow field in the core. This study provides TMSFEA with core structures that meet the thermal-hydraulic design principles and also provides ideas for similar hollow reactor core designs.