ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Byoungil Jeon, Jinhwan Kim, Myungkook Moon
Nuclear Technology | Volume 209 | Number 1 | January 2023 | Pages 1-14
Technical Paper | doi.org/10.1080/00295450.2022.2096389
Articles are hosted by Taylor and Francis Online.
Radioisotope identification (RIID) is a representative application of deep learning for radiation measurements. Deep learning-based RIID models have been implemented in various types of radiation detectors; however, very few of these models have been interpreted using explainable artificial intelligence (XAI) methods. This paper presents an explanation of a deep learning–based RIID model for a plastic scintillation detector. The RIID task is defined as a multilabel binary classification problem, and the dataset is generated using a random sampling procedure. The identification performance is verified using experimental data. The experimental results demonstrate that the performance of the RIID models increased with the increase in the total counts of the dataset. Additionally, XAI methods are implemented, and their explanatory performance is verified for the spectral input. The domain knowledge of RIID for the plastic scintillation detector is that patterns near the Compton edge can be used as evidence for the existence of radioisotopes. Among the implemented XAI methods, integrated gradient and layerwise relevance propagation exhibited concurrence with the domain knowledge, with the Shapley value explanation method presenting the most reliable results.