ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2024
Jan 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
October 2024
Fusion Science and Technology
Latest News
From remediation to production: The DOE’s Cleanup to Clean Energy initiative
On July 28, 2023, the Department of Energy launched its Cleanup to Clean Energy initiative, an effort to repurpose underutilized DOE-owned property—portions of which were previously used in the nation’s nuclear weapons program—into the sites of clean-energy generation.
Gerald P. Jackson
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S107-S112
Technical Note | doi.org/10.1080/00295450.2021.1997057
Articles are hosted by Taylor and Francis Online.
Low-mass antimatter-based propulsion systems are well matched to low-mass unmanned spacecraft sent to explore exoplanets and transmit back scientific observations. In the case of nearby habitable-zone exoplanet Proxima b, flyby missions as short as 20 years are being contemplated. In order to achieve spacecraft velocities greater than 2% of the speed of light, exhaust particle velocities commensurate with kinetic energies of at least 1 MeV/nucleon are required. The design of a nuclear propulsion system capable of such particle energies is presented. The scope of this technical note is restricted to the nuclear physics of antiproton-induced fission, classical physics of collimating charged exhaust particles, and the accelerator physics of a particle trap within which the fission events are generated. Other vital issues such as antimatter production and storage are the subject of papers in other journals more appropriate for these subjects.