ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Gerald P. Jackson
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S107-S112
Technical Note | doi.org/10.1080/00295450.2021.1997057
Articles are hosted by Taylor and Francis Online.
Low-mass antimatter-based propulsion systems are well matched to low-mass unmanned spacecraft sent to explore exoplanets and transmit back scientific observations. In the case of nearby habitable-zone exoplanet Proxima b, flyby missions as short as 20 years are being contemplated. In order to achieve spacecraft velocities greater than 2% of the speed of light, exhaust particle velocities commensurate with kinetic energies of at least 1 MeV/nucleon are required. The design of a nuclear propulsion system capable of such particle energies is presented. The scope of this technical note is restricted to the nuclear physics of antiproton-induced fission, classical physics of collimating charged exhaust particles, and the accelerator physics of a particle trap within which the fission events are generated. Other vital issues such as antimatter production and storage are the subject of papers in other journals more appropriate for these subjects.