ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Dennis Nikitaev, L. Dale Thomas
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S96-S106
Technical Note | doi.org/10.1080/00295450.2021.2021768
Articles are hosted by Taylor and Francis Online.
Water, ammonia, and other volatiles that can be used for propellant have been found on the Moon, and the technology that will be used to extract them has been laboratory tested. One of the considered propulsion systems for a crewed mission to Mars is nuclear thermal propulsion (NTP). However, current reference missions consider hydrogen as the main propellant, which is technologically difficult to store. Electrolysis units are required to process the lunar water to separate it into oxygen and hydrogen, which is only 1/8 of the mass of water mined. Due to these challenges, a preliminary analysis of alternative propellant nuclear thermal propulsion (A-NTP) expander cycle engines was made. A-NTP engine models that produced 25 000 lbf of thrust, which is comparable to the baseline hydrogen NTP engines, were constructed in Simulink for preliminary analysis, which yielded an Isp of 320.4 s for water and 381.6 s for ammonia. Although this Isp is lower than the most efficient chemical engines, since water and ammonia are used directly and are stored as such, a propellant tank volume decrease of up to 76.1% for water and 69.5% for ammonia is possible. This will decrease the number of launches, given that the tanks are not fully tanked at time of launch and lunar resources are used to fill the tanks completely.