ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TVA to file for Clinch River SMR construction permit by June
In a Q&A posted on TVA’s website last week about a “new nuclear heyday,” Bob Deacy shared his vision for the Clinch River nuclear site in Oak Ridge, Tenn.—and some news about next steps for the company’s small modular reactor plans.
The Tennessee Valley Authority’s senior vice president for the Clinch River project, Deacy described his vision for up to four SMRs built on plots smaller than a football field with state-of-the-art digital equipment and a newly trained workforce providing reliable 24/7 power to the grid.
Dennis Nikitaev, L. Dale Thomas
Nuclear Technology | Volume 208 | Number 1 | December 2022 | Pages S96-S106
Technical Note | doi.org/10.1080/00295450.2021.2021768
Articles are hosted by Taylor and Francis Online.
Water, ammonia, and other volatiles that can be used for propellant have been found on the Moon, and the technology that will be used to extract them has been laboratory tested. One of the considered propulsion systems for a crewed mission to Mars is nuclear thermal propulsion (NTP). However, current reference missions consider hydrogen as the main propellant, which is technologically difficult to store. Electrolysis units are required to process the lunar water to separate it into oxygen and hydrogen, which is only 1/8 of the mass of water mined. Due to these challenges, a preliminary analysis of alternative propellant nuclear thermal propulsion (A-NTP) expander cycle engines was made. A-NTP engine models that produced 25 000 lbf of thrust, which is comparable to the baseline hydrogen NTP engines, were constructed in Simulink for preliminary analysis, which yielded an Isp of 320.4 s for water and 381.6 s for ammonia. Although this Isp is lower than the most efficient chemical engines, since water and ammonia are used directly and are stored as such, a propellant tank volume decrease of up to 76.1% for water and 69.5% for ammonia is possible. This will decrease the number of launches, given that the tanks are not fully tanked at time of launch and lunar resources are used to fill the tanks completely.